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ABSTRACT

The emphasis in this talk will be on the precise

C_ characterization of the term "broken symmetry" and the

phenomena associated with it. We will examine to what extent

one may generalize to random systems and to "dissipative

structures". Thermal equilibrium broken symmetry is charac-

terized by an order parameter r(r) which is a thermodynamic

variable with a physical conjugate force field X , and by a

free energy dependent upon n(r); from these properties

follow not only the Landau thermodynamics but also the phenomena

of generalized rigidity, Goldstone collective excitations, and

topologically stable defects. We conjecture what may be the

consequences of relaxing these assumptions.
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I. Introduction

It is appropriate to commemorate the disco -
-

of piezoelectricity, one of the most useful of broken

symmetry phenomena, with a general discussion of broken

symmetry as it manifests itself in condensed matter systems.

Arguments from broken symmetry, however, go back even further

in French science: Louis Pasteur's deduction that fermentation

was a spontaneous life process on the basis of the optical ac-

tivity of fermentation products is to me one of the most mirac-

ulously early and deep insights in the history of science. It

is striking that so much of that history has taken place within

a few hundred meters of where we now stand.

The more theoretical physicists penetrate the

ultimate secrets of the microscopic nature of the universe,

the more the grand design seems to be ultimate symmetry and

ultimate simplicity. But all of the interesting parts of

the universe, at least to us , are,like the earth itself

as well as our own bodies, markedly complex and markedly

unsymmetric. In the most elementary sense, then, we are

surrounded by "broken symmetry", the result undoubtedly of

* The work at Princeton university was supported in part by the
National Foundation Grant No. DMR 78-03015, and in part by the
U.S.Office of Naval Research Grant No. N00014-77-C-0711.
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some sequence of catastrophes. What I want to do here is

to discuss the general rules which govern this process of

the development of complexity and the breaking of symmetry

in particular kinds of cases.

In particular, I want to point out that there is

a complete, rather satisfactory theoretical structure de-

scribing one particular type of broken symmetry, namely that

which occurs in equilibrium condensed matter systems, such

as the crystals which exhibit piezoelectricity. It is this

kind of broken symmetry object which allows us to build

structures, communicate, make measurements, calculate, locate

ourselves - in essence, carry on all the everyday business

of life.

It is clear that an equally important kind of

broken symmetry occurs in many dissipative systems when they

are driven far from equilibrium. These systems exhibit

nonlinear instabilities at which new structures appear,

which have often been called "dissipative structures" and

discussed on a parallel basis with the equilibrium structures

of broken symmetry systems, Surely there are obvious parallels

between these two types of systems - for instance, they both

come under the general umbrella of "catastrophe theory",2

and the second nd often - but not always - changes the

symmetry of--t system in which it occurs, if only in some

trivial fashion.
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What I want to do here is to pin down the properties

of condensed matter systems exhibiting broken symmetry in some

detail. After all, the existence of broken symmetry in itself

may not be of any use or significance: for instance, fully

developed turbulence can be thought of as a broken symmetry

state, yet seems to be totally chaotic and without definable

structure. When one speaks of "dissi .,tive structures" and

makes the analogy to equilibrium phases, there is an implied

analogy to their structural properties. Thus it is relevant

to exhibit these and their underlying sources.

The second part of the talk will consist almost

entirely of questions rather than answers. To my mind there

exists neither a theoretical nor an experimental basis for

deciding whether (or not) dissipative systems have structural

properties analogous to equilibrium ones, and I am essentially

presenting a program of questions one may ask in this field.

II. Equilibrium Broken Symmetry and the Concept of Rigidity

Landau was the first person to emphasize the im-

portant role which symmetry plays in the phase transitions
3

of equilibrium condensed matter systems. It is this, rather

than Ehrenfest's concept of 1st vs. nth order, which

gives us our most fundamental classification scheme of phases

and the most basic theorems of solid state physics.

In modern terms, one envisages a basic symmetry

group of the underlying particles and of space, Go, containing

not only such elements as rotationS(isotropy of space) and
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translations (homogeneity of space) but time-reversal

invariance, in some cases spin-rotation invariance, etc.

Landau observed the very important fact that condensed states

often exhibit lower symmetry than Go; for instance, where

a molecular liquid is homogeneous and isotropic and exhibits

the group GO,. a nematic liquid crystal is anisotropic, a

smectic one inhomogeneous. The new group of, for instance,

the nematic, G1 has only rotation symmetry about the director

D

Thus phase transitions often involve a change of

symmetry. We classify phase transitions into 3 basic classes:

1) Same symmetry in the two phases: as, e.g., liquid-gas,
4

the Mott metal-insulator transition. In this case the transi-

tion may be first-order, and the line of first-order transi-

tion can, and often does, end in a critical point where the

free energies of the two phases coincide and the transition

simply disappears. Too often the formal similarity of this

case to certain aspects of case (2) is allowed to obscure the

physical difference in principle.

2) G is a subgroup of Go: the symmetry of Go is "broken".

In this case there can never be a disappearance of the

transition line, which may be first or second order depending

on details. Symmetry cannot change continuously; what I have

called the First Theorem of condensed matter physics.
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Since the two phases differ in symmetry, they may have the

same free energy and the same physical parameters given by the
PF and

derivatives of the free energysuchasT = a, P =n, and yet

be distinct:a higher-order transition is permitted, even

along a line of critical points, which line may continue

into a line of first-order transitions.

31 The uninteresting case is unrelated symmetries G0 and

G1; in this case only a first-order transition is possible,

since only by impossible coincidence could all parameters

coincide.

In order to do this Landau added one concept which

is vitally important to all of these questions: that of the

"order parameter" n. Unfortunately, the concept of the

order parameter still remains somewhat mysterious, although

in most simple cases its choice is obvious. This concept is

only of interest in the "broken symmetry" case (2). In case 1,

any of the relevant thermodynamic variables will serve to

distinguish the degree of difference of the two phases, as

for instance in the Mott transition the number of free

carriers, etc.

In the broken symmetry case where a loss of symmetry

is present, Landau introduces an "order parameter"n indicating

the degree of broken symmetry which, as he points out, is

usually also the degree to which the system has "ordered" -



for instance, in the liquid crystal, the degree to which

the molecules are no longer arbitrarily oriented but have

now oriented themselves along a specific direction.

In this example, one might use <cos 2 0> - 1/3

as the order parameter, where 0 is the angle of a molecule with the

director D.This "order parameter" is very important in many

ways, not the least of which is that it is a new thermo-

dynamic variable, and often either is or contains a dynamic

one as well.

As far as I know there is no complete characteri-

zation of the "order parameter" but it must certainly have

the following important properties (and I have the impression

that the term is, unfortunately, often used without under-

standing these restrictions):

1) It must be a variable which is operated

on by the group generators of G /G = H, the group repre-

senting the amount of lost symmetry. This is in fact often

called the "group of the order parameter" and defines

"order parameter space". 5,6

2) Since these group generators - at least for

all continuous groups GO - are necessarily dynamical as well

as thermodynamic variables, since they are operators in the

Hilbert space of the underlying quantum mechanics, the

order parameter must contain, at least, a dynamical variable

or variables conjugate to these.
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3) Finally, the order parameter must be a useful

quantitative measure of the degree to which Go has been

broken. It has then a thermodynamic as well as dynamic

significance. In such cases as order-disorder transitions

(described by the Ising model) where the broken symmetry is

discrete, this may be its only role: the order parameter

can be merely the difference in mean population of the two

or more relevant states on a given site.

In the more interesting continuous situation, there

are two cases. First, there is the case of spins, where

the algebra is totally defined by the spin components,

which are themselves the generators of spin rotations. In

this case the group generators, S x , Sy, Sz , are self-

contained, and their mean value <9 >can be taken as the

order parameter. Since the average of any of these group generators

is, by symmetry, a constant of the motion, the ferromagnetic

case represents a very rare example - a case in which the

order parameter is also a constant of the motion, which has

important consequences for the nature of the relevant

Goldstone bosons. It is too bad that in illustrating the

concept of broken symmetry, the ferromagnetic example is

often used: it is extremely atypical.

More typical in its complication is the antiferro-

magnetic case. Here an additional but discrete symmetry

is broken, that of the lattice translationand the order
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parameter is not the mean magnetization but the sublattice

magnetization, or more generally a Fourier component of

the magnetization. While this is not a constant of the

motion, it still can be related to generators of the

continuous part of the symmetry group.

The cases of density waves - solid lattice or

smectic liquid crystal - and superfluidity are more typical.

Let us first discuss the simple one, superfluidity.i Here

the broken symmetry is the gauge symmetry of interactions

which locally conserve particle numberrand the group generator

is then the number operator,which may be written i , the

phase or gauge variable. But the phase itself is not a

suitable order parameter because it is periodic and its

origin is meaningless. Hence it is natural to use

ce i or > = 4,(r) as an order parameter.

This exhibits the most straightforward type of

order parameter. The phase of 0 is the relevant dynamical

variable, independently of the magnitude which is purely

statistical in nature. This is the general rule: the

order parameter contains a phase-angle like quantity which

is both a dynamical variable and reflects the original

symmetry - in the sense that the free energy cannot depend

on the value of *, only on relative values in different

parts of the sample. * may move about freely in the space

defined by the group H (in this case the group of gauge
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symmetry U(M)). In the isotropic ferro- and antiferromagnetic

cases, "angle" is the spin direction, a dynamical variable

free to rotate on the sphere. In real (as opposed to model)

anisotropic ferromagnets, the spin retains its dynamical

character in such phenomena as domain wall motion and

spin waves. The nematic liquid crystal behaves

in much the same way.

But the density waves bring in added complications.

The phase angle variable in this case is position in space,

and it is reasonable to use the Fourier components of the

density as order parameters:

iG. r
PG = <e

Clearly, this contains the displacement u as a phase

parameter:

PG(u) = <eiG (r+u)>

is a density wave displaced by a distance u. Thus the

strain u is the dynamical variable and IPGI the

statistical one for this case.

In the crystal lattice case, where the number of

independent G's is equal to the dimensionality of space,

u is the only independent angle variable in a certain sense.
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This is despite the fact that , of course, also can rotate

freely in space. However, as Halperin and Nelson have empha-

sized 8(and as was already evident in the old Shockley-Read

construction of a grain boundary as a dislocation array) one

must introduce a large, finite density of defects in the strain,

essentially destroying positional order, before orientational

readjustment of parts of the crystal independently is permitted.

Thus in the true lattice case, only the strain is a relevant

dynamical object, although the crystal overall may rotate as

well.

This is not the case in the cholesteric and smectic,

which are perhaps the most difficult to characterize in prin-

ciple of all ordered states. Here strain u and G are both

free angle variables, but there is what Volovik and Mineev
9

have called an "integral constraint" restricting the angular

variation of G: namely,

SG-ds = 0.

That is, the layers may bend but the distance between layers

must be constant. The nature of singularities, at least, in

these two cases is not understood as yet.

As important and little-appreciated caution must be

added on the dynamics of the density wave situation. The

"strain" or "position" variable "u" is that of the density

wave itself, which only usually, not always, means the

position of the whole substance. As Overhauser first pointed
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out for spin density waves1 0 , and Leggett for solids1 1 , the

mass being carried as the density wave moves, by the density

wave fluctuations or "phasons", may or may not be the whole mass

density. This question is a subtle and complex one related to

the question of Mott or Wigner metal-insulator transitions.

If there is a true energy gap for excitation of particles

in the self-consistent lattice potential - as there is for

all real solids, but not for smectics or electron density waves

in some cases - the lattice carries all the mass,

From the order parameter and its dynamic nature

flow many of the useful and important properties of con-

densed broken symmetry systems: the Goldstone and Higgs

boson excitations, the long-range elastic-like forces

(such as Suhl-Nakamura interactions in magnets) but most

important of all the property I call generalized rigidity.

Important examples of generalized rigidity are true rigidity,

superconductivity, superfluidity, and hysteresis in magnets.

The order parameter, which is invariably a thermal

average of some local quantity, can be defined locally, at

least if its variation is sufficiently slow. The magnetiza-

tion direction of an antiferromagnet, or the phase of a

superfluid, can vary from place to place in a given sample.

It is only reasonable to suppose that the extra free energy

caused by such variation grows only slowly as the rate of

variation increases: i.e., F = F (InIT, - -) +
F I,T) (V 2 + . 2 +.

+~(VImom
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We write the gradient terms only schematically, as

far as their tensor character goes.

This free energy determines the degree of fluctuation

of n and hence * by conventional Gibbs theory (treating ri

as a conventional thermodynamic variable whose local average

value we can constrain at will for purposes of calculating F).

F 0does not depend on * at all, by our original symmetry.

The V0) 2 term is necessary if the broken symmetry ordered

state is to be stable. This equation implies the rigidity

property. First, it is clear that with even a very small force

applied only locally we can move * about at will in the whole

sample. This is because the dependence of F on the origin of

vanishes by symmetry, so that * can move about at will;

while the V0 term will enforce uniform *. Equally, without

breaking down ordering, i.e., increasing F at least locally,
0

a force applied on 0 at one end of the sample will be trans-

mitted to the other: this is rigidity, and I consider it one

of the key consequences of broken symmetry in condensed systems,

since only with rigidity can structures be formed of these

systems, or information or energy be transmitted through them.

III. Generalization of the Order Parameter and Broken Symmetry

Concept, especially "dissipative structures".

In several special cases one has attempted to define

an *order parameter" which does not have the full properties,

for instance, that of being a dynamical variable - the

present version of the order parameter in the spin glass
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is one example.12 It is not at all clear, at least theoretically

and probably experimentally, that true rigidity exists in

this system. My own preference is to leave such aberrant

cases to one side and recognize that the analogy is a

dangerous one.

It is for this reason that I am disturbed by the

common uses of the terms "broken symmetry", "order parameter",

and "dissipative structure" in the theory of nonlinear

instabilities of driven systems. The attempt is to draw

the analogy with equilibrium structures of broken-symmetry

systems. It is proposed that if such properties existed,

they would have important consequences in cr understanding
13,14

of the self-organization of living systems.

One can argue endlessly about words rather than

meanings in this area so I would like to make a very clear

distinction between what one might hope to be a useful

"dissipative structure" as opposed to something which,

while it has broken symmetry per se, and contains visible

structure and something which might be described as an

order parameter, is nonetheless an artefact which does not

have the properties which might be useful for purposes of

self-organization.

The two properties which I would consider

essential for self-organization are:

(a) Autonomy

(b) Rigidity
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Both of these are properties of condensed broken symmetry

systems, and we may ask if they are exhibited in any well-

understood dissipative systems.

By autonomy of a structure I mean that its space

or time structure should not be predetermined in terms of

the scale of the external boundary conditions [as opposed

to the microscopic scale of atoms or molecules, for instance).

An example of a dissipative system which does have autonomy of

scale is a dye laser or any laser where the precise mode of

oscillation is not predetermined by careful mode selection

techniques: the wavelength of light is an autonomous

microscopic scale irrelevant to the scale of the apparatus.

This is not the case in such classical systems as Benard or

Couette convection cellswhich are controlled in size by

one of the apparatus dimensions. Autonomy is necessary if one

is to speak of self-organization as opposed to predetermined

organization.

The second property, that of rigidity, it seems

to me is also essential. If the structure is to be stable,

carry out actions, and, above all, to serve as a substrate

for information, it is essential that it be rigid: that is,

that it have the two properties of (1) having internal degrees

of freedom which are not predetermined; (2) having a freedom

which may be stably manipulated and which can exert action at a

distance,

* A
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I am unaware of any work in the literature which

demonstrates these properties in any well-understood dissipative

system. Most of the conventional hydrodynamic systems which

show regular roll patterns are not really autonomous. In

these systems one often defines an "order parameter" which is

the inhomogeneous component of velocity or flow, and under

sufficiently restrictive conditions a kind of Gibbs free

energy functional of the order parameter can be derived

which gives the equations of motion near the instability by

differentiation. But the assumptions which go into this

derivation seem to preclude its general use, or the derivation

of rigidity properties from it; nor is it clear that this

"order parameter" has the real properties of the condensed

systems order parameters, such as freedom to move within an

order parameter space, locality, etc.

In lasers and in turbulent systems, as well as in

some chemical oscillation systems, autonomy seems to be

available but not order or rigidity; in general, these

systems appear to be very chaotic. Whether this is a general

state of affairs needs to be studied more carefully.

If one enquires how living systems seem to go about

building autonomous, rigid structures, one finds a fascinating

mixture of dissipative and condensation processes at work.

One seems to see dissipative stages initiating condensation,

such as the formation of membranes, for example, and the
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condensed systems in turn controlling dissipative stages.
Haken has emphasized this structure. It is not clear that

the present idea of "dissipative structures" in the theory

of nonlinear systems is at all relevant to this process.
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FIGURE CAPTIONS

la. Nematic liquid crystal in the disordered state. The

line segments represent the rodlike molecules of the

nematic. Averaging molecular orientations over

macroscopic distances yields zero.

lb. For a suitable choice of thermodynamic parameters, the

nematic enters the ordered state, with the appearance

of a macroscopic order parameter (the director t), The

system is no longer Isotropic, but has chosen a special

direction: rotational symmetry has been broken.

2. Variation of magnetization M with temperature T in a

simple ferromagnet. This Is a typical second-order phase

transition, in which the order parameter grows continuously

from zero as T is lowered below a critical temperature Tce

3. In a first-order transition, such as the liquid to solid

crystal transition shown here, the order parameter will

exhibit a discontinuous jump at the transition with an

associated release Cor absorption) of latent heat.

4. Illustration (somewhat schematic) of generalized rigidity.

An external force (the crank) couples to the order

parameter at one end of the system, represented as a gear.

A change In the order parameter at any point In the



Figure Captions - 2

ordered system is transmitted to all other parts of the

system (first gear turns the second gear). The second

gear turns the second crank: a force has been trans-

mitted from one end of the system to the other via the

order parameter.

5. The B~nard instability in rectangular geometry. A layer

of fluid between two horizontal rectangular plates Is

heated from below. When a sufficient thermal gradient is

reached between top and bottom plates, convection arises

In the form of rolls. In this cutaway edge-on view, the

arrows represent the fluid velocity.

6. Couette flow: A fluid Is placed between two cylinders

with different rotational velocities about their axes.

When the velocity gradient exceeds a critical value,*

rolls of vortices form. In this view the cylinder is

cut along its length.

7. In a laser, a standing wave of excitation density is

set up between two end plates, or mirrors, resulting

in emission of a beam of coherent radiation.
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